Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 112(5): 1165-1174, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35365059

RESUMO

Mycotoxin contamination is a leading cause of food spoilage and waste on a global scale. Patulin, a mycotoxin produced by Penicillium spp. during postharvest pome fruit decay, causes acute and chronic effects in humans, withstands pasteurization, and is not eliminated by fermentation. While much is known about the impact of patulin on human health, there are significant knowledge gaps concerning the effect of patulin during postharvest fruit-pathogen interactions. Application of patulin on six apple cultivars reproduced some blue mold symptoms that were cultivar-independent and dose-dependent. Identical symptoms were also observed in pear and mandarin orange. Six Penicillium isolates exposed to exogenous patulin exhibited delayed germination after 24 h, yet all produced viable colonies in 7 days. However, four common postharvest phytopathogenic fungi were completely inhibited by patulin during conidial germination and growth, suggesting the toxin is important for Penicillium to dominate the postharvest niche. Using clorgyline, a broad-spectrum efflux pump inhibitor, we demonstrated that efflux plays a role in Penicillium auto-resistance to patulin during conidial germination. The work presented here contributes new knowledge of patulin auto-resistance, its mode of action, and inhibitory role in fungal-fungal interactions. Our findings provide a solid foundation to develop toxin and decay mitigation approaches.


Assuntos
Malus , Patulina , Penicillium , Frutas/microbiologia , Malus/microbiologia , Patulina/análise , Patulina/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Virulência
2.
Mol Cell Proteomics ; 19(2): 344-361, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31871254

RESUMO

The blue mold fungus, Penicillium expansum, is a postharvest apple pathogen that contributes to food waste by rotting fruit and by producing harmful mycotoxins (e.g. patulin). To identify genes controlling pathogen virulence, a random T-DNA insertional library was created from wild-type P. expansum strain R19. One transformant, T625, had reduced virulence in apples, blistered mycelial hyphae, and a T-DNA insertion that abolished transcription of the single copy locus in which it was inserted. The gene, Blistering1, encodes a protein with a DnaJ domain, but otherwise has little homology outside the Aspergillaceae, a family of fungi known for producing antibiotics, mycotoxins, and cheese. Because protein secretion is critical for these processes and for host infection, mass spectrometry was used to monitor proteins secreted into liquid media during fungal growth. T625 failed to secrete a set of enzymes that degrade plant cell walls, along with ones that synthesize the three final biosynthetic steps of patulin. Consequently, the culture broth of T625 had significantly reduced capacity to degrade apple tissue and contained 30 times less patulin. Quantitative mass spectrometry of 3,282 mycelial proteins revealed that T625 had altered cellular networks controlling protein processing in the endoplasmic reticulum, protein export, vesicle-mediated transport, and endocytosis. T625 also had reduced proteins controlling mRNA surveillance and RNA processing. Transmission electron microscopy of hyphal cross sections confirmed that T625 formed abnormally enlarged endosomes or vacuoles. These data reveal that Blistering1 affects internal and external protein processing involving vesicle-mediated transport in a family of fungi with medical, commercial, and agricultural importance.


Assuntos
Proteínas Fúngicas/metabolismo , Penicillium/metabolismo , Virulência , Frutas/microbiologia , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , Malus/microbiologia , Micélio/metabolismo , Micélio/ultraestrutura , Patulina/metabolismo , Penicillium/genética , Penicillium/fisiologia , Penicillium/ultraestrutura , Vesículas Transportadoras/metabolismo
3.
Plant Dis ; 103(2): 331-337, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30562129

RESUMO

Penicillium spp. cause blue mold of stored pome fruit. These fungi reduce fruit quality and produce mycotoxins that are regulated for processed fruit products. Control of blue mold is achieved by fungicide application, and in 2015 Academy (active ingredients fludioxonil and difenoconazole) was released for use on pome fruit to manage postharvest blue mold. Baseline sensitivity for fludioxonil but not difenoconazole has been determined for P. expansum. To establish the distribution of sensitivity to difenoconazole before commercial use of Academy, 97 unexposed single-spore isolates from the United States and abroad were tested in vitro. Baseline EC50 values ranged from 0.038 to 0.827 µg/ml of difenoconazole with an average of 0.16 µg/ml. Complete inhibition of mycelial growth for all but three isolates occurred at 5 µg/ml of difenoconazole, whereas 10 µg/ml did not support growth for any of the isolates examined. Hence, 5 µg/ml of difenoconazole is recommended for phenotyping Penicillium spp. isolates with reduced sensitivity. Isolates with resistance to pyrimethanil and to both thiabendazole and pyrimethanil were observed among the isolates from the baseline collection. Academy applied at the labeled rate had both curative and protectant activities and controlled four representative Penicillium spp. from the baseline population. This information can be used to monitor future shifts in sensitivity to this new postharvest fungicide in Penicillium spp. populations.


Assuntos
Dioxolanos , Fungicidas Industriais , Penicillium , Triazóis , Dioxolanos/farmacologia , Fungicidas Industriais/farmacologia , Testes de Sensibilidade Microbiana , Penicillium/efeitos dos fármacos , Triazóis/farmacologia
4.
Phytopathology ; 107(3): 362-368, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27841961

RESUMO

Botrytis cinerea causes gray mold and is an economically important postharvest pathogen of fruit, vegetables, and ornamentals. Fludioxonil-sensitive B. cinerea isolates were collected in 2011 and 2013 from commercial storage in Pennsylvania. Eight isolates had values for effective concentrations for inhibiting 50% of mycelial growth of 0.0004 to 0.0038 µg/ml for fludioxonil and were dual resistant to pyrimethanil and thiabendazole. Resistance was generated in vitro, following exposure to a sublethal dose of fludioxonil, in seven of eight dual-resistant B. cinerea isolates. Three vigorously growing B. cinerea isolates with multiresistance to postharvest fungicides were further characterized and found to be osmosensitive and retained resistance in the absence of selection pressure. A representative multiresistant B. cinerea strain caused decay on apple fruit treated with postharvest fungicides, which confirmed the in vitro results. The R632I mutation in the Mrr1 gene, associated with fludioxonil resistance in B. cinerea, was not detected in multipostharvest fungicide-resistant B. cinerea isolates, suggesting that the fungus may be using additional mechanisms to mediate resistance. Results from this study show for the first time that B. cinerea with dual resistance to pyrimethanil and thiabendazole can also rapidly develop resistance to fludioxonil, which may pose control challenges in the packinghouse environment and during long-term storage.


Assuntos
Botrytis/efeitos dos fármacos , Farmacorresistência Fúngica , Fungicidas Industriais/farmacologia , Malus/microbiologia , Doenças das Plantas/microbiologia , Botrytis/genética , Dioxóis/farmacologia , Pennsylvania , Fenótipo , Pirimidinas/farmacologia , Pirróis/farmacologia , Tiabendazol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...